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Abstract
Thermodynamic properties of one-dimensional nonlinear Klein–Gordon
systems with anharmonic interparticle interaction are studied by means of
the transfer integral method. We show that the presence of kink compactons is
signalled by a term proportional to exp[−χ(βEkc)

3/4] in the free energy where
Ekc is the static kink compacton energy and χ a model temperature independent
coefficient.

PACS numbers: 64.60.Cn, 63.60.+h

1. Introduction

Many nonlinear physical systems that exhibit the propagation of large amplitude excitations
such as solitons, have been the subject of considerable interest for many decades. These
solitons are the result of interplay between the nonlinear and dispersive effects. Condensed
matter systems have been more solicited. This particular attention is justified by the role played
by kink solitons in many areas of condensed matter, since they have been used to describe
various phenomena such as dislocation in crystals [1], planar domain walls in ferromagnets
[2], incommensurate systems [3], proton motion in hydrogen-bonded systems ranging from
ferroelectrics to biomolecules [4–6], to name only a few. Many of them are modelled by
the well-known nonlinear Klein–Gordon (NKG) models where the lattice models consist of
harmonically coupled particles subjected to an on-site substrate potential, which possesses
more than one degenerate minima. This spatial degeneracy, associated with the harmonic
coupling between lattice sites, provides kink solitons with infinite wings, which cause mutual
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interactions. The thermodynamics at low temperature of such systems is well known. It has
been shown, through the transfer integral operator (TIO) method [4, 7, 9, 10] and the kink-gas
phenomenology [8, 9, 11], that the low-temperature thermodynamics of the system is sensitive
to and even dominated by static kink solitons; their presence in the system is signalled by a
term proportional to exp(−Ek/kBT ) in the low-temperature free energy, where Ek is the static
kink energy.

However, as demonstrated by Rosenau and Hyman [12], who investigated a special
type of Korteweg–de-Vries equation, another kind of soliton excitation without infinite tail
can be obtained. These solitary waves with compact support are called compactons and
result in nonlinear dispersion which is capable of causing deep qualitative changes in the
nature of genuinely nonlinear phenomena. Similarly, Kivshar has pointed out that intrinsic
localized modes in purely anharmonic lattices may exhibit compacton-like properties [13].
Recently, Dusuel et al [14] demonstrated theoretically and experimentally with the nonlinear
coupled pendulum that kink compacton excitations can appear in NKG models. This work
was later improved by Maximo et al [15] who evidenced another kind of compacton in
the system such as drop compactons (soliton with compact support in the shape of hard
spheres), cups, peak solitons or peakons and defects. Very recently, using the method
of constructing exact solutions on lattices proposed by Kinnersley and described in [16],
Kevrekidis et al [17] have calculated the exact compacton solutions in a discrete system and
have examined the linear stability of such solutions, for the bright and the dark compactons,
respectively.

As condensed matter systems are one of the physical systems whose dynamics can be
satisfactorily described by the generalized NKG models and where the number of low-lying
excitations is thermally controlled, the effect of kink compactons on the thermodynamic
properties of kink compacton-bearing systems is still an open question, although since the
pioneering work of Rosenau and Hyman [12] much progress have been made in order
to understand the dynamical properties of these systems. To cite just two examples, we
mention that the ability of kink compactons to execute a stable ballistic propagation in discrete
NKG systems with anharmonic coupling [18] and the existence of breather compactons [19]
have been investigated. In other words, does the presence of kink compactons still remain
signalled by terms proportional to exp(−Ek/kBT ) in the thermodynamic quantities of the
systems exhibiting kink compactons as is the case of kink solitons of basic NKG models?
We try to answer the above stated question, since up to now there are no investigations of
this issue, and this is the main objective of this paper. Before continuing, we would like
to mention that the inclusion of anharmonic forces or interactions is generally dictated by
some experimental results. In this spirit, some previous models [20] have indicated that the
inclusion of anharmonic forces can give an answer to the problem of heat conduction in one-
dimensional (1D) insulating solids. In addition, it has been demonstrated that for sufficiently
high energies/temperatures where the usual picture of weakly interacting phonons is no longer
appropriate, one has to face a fully nonlinear problem and a complete analytical solution seems
hardly feasible [20].

The organization of the paper is as follows: in section 2, we present the Hamiltonian
model of the generalized NKG systems and discuss qualitatively the existence of low-energy
excitations (phonons, kink solitons and kink compactons) of the resulting equation of motion
for the field. In section 3, we use the TIO method [4] to approximate the partition function
into an equivalent Schrödinger-type equation. Using asymptotic methods from the theory of
differential equations depending on a large parameter, to solve this equation, the contributions
of low-energy excitations to the free energy are then obtained. Section 4 gives concluding
remarks.
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2. Model, kink soliton and kink compacton-like excitations

To begin, we consider a system of particles of mass m anharmonically coupled to their nearest
neighbours and placed on an infinite 1D lattice of spacing a. The Hamiltonian of this discrete
chain may be written as

H = Aa
∑ {

1

2

(
dφi

dt

)2

+ U(φi+1 − φi) + ω2
0Vs(φ)

}
, (2.1)

with the interatomic interaction pair potential U(φi+1 − φi) taken as

U(φi+1 − φi) = C2
0

2a2
(φi+1 − φi)

2 +
Cnl

4a4
(φi+1 − φi)

4, (2.2)

where φi denotes the dimensionless displacement of the ith particle measured from the ith
lattice site. The constant C0 is a characteristic velocity, ω0 is a characteristic frequency,
d0 = C0/ω0 defines the characteristic length scale of the basic NKG systems and the factor
A ≈ ma sets the energy scale of the system. The parameter Cnl controls the strength of the
nonlinear interparticle coupling.

The last term of equation (2.1), Vs(φ), is the on-site or substrate potential and has at
least two degenerate minima. Here, we consider two specific substrate potentials: the φ-four
potential Vs(φ) = 1

8 (1 − φ2)2 and the sine-Gordon (sG) potential Vs(φ) = 1 − cos(φ). When
Cnl = 0, the Hamiltonian (2.1) reduces to the basic NKG systems Hamiltonian in the notation
of Currie, Krumhansl, Bishop and Trullinger (CKBT) [9].

In the continuum or ‘displacive’ limit, the Hamiltonian (2.1) is transformed approximately
to

H = Aa

∫
dx

a

[
1

2

(
∂φ

∂t

)2

+
1

2
C2

0

(
∂φ

∂x

)2

+
1

4
Cnl

(
∂φ

∂x

)4

+ ω2
0Vs(φ)

]
. (2.3)

We shall have the occasion to use both forms ((2.1) and (2.3)) of the Hamiltonian of the
system. The discrete form (2.1) is used in obtaining exact statistical mechanical results via
the TIO method, whereupon the explicit process of taking the continuum limit follows. The
continuum form (2.3) is used to study qualitatively the behaviour of the system. The excitations
of the system arise as solutions to the Euler–Lagrange equation of motion following from
equation (2.3):

φtt − C2
0φxx − 3Cnlφ

2
xφxx + ω2

0 dVs(φ)/dφ = 0, (2.4)

where the subscripts indicate partial derivatives with respect to time t and space x = ia. We
look for travelling waves of the form φ = φ(s) = φ(x − vt) where s is a single independent
variable depending on v which is an arbitrary velocity of propagation. The first integral
resulting from equation (2.4) is then given by(

dφ

ds

)4

− 2
(
v2 − C2

0

)
3Cnl

(
dφ

ds

)2

− 4ω2
0

3Cnl
[Vs(φ) + C1] = 0, (2.5)

where C1 is an integration constant.
Depending on the magnitude and on the sign of the nonlinear coupling Cnl, the nonlinear

partial differential equation (2.4) may sustain different kinds of nonlinear excitations. For the
basic NKG systems obtained by setting Cnl = 0, the phase plane (φ, p = dφ/ds) resulting
from equation (2.4) is well known: the equilibrium solutions are φ(s) = 0, −1 and +1 for
the φ-four potential and φ(s) = 0, π and 2π in one period for the sG potential. The kink
solitons are trajectories connecting (φ, p) = (−1, 0) and (+1, 0) for the φ-four potential
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Figure 1. An example of the phase trajectories of the system governed by equation (2.4),
p(φ) = dφ/ds as a function of φ: the φ-four potential case. The values of the characteristic
parameters of the system are ω0/C0 = 0.2 and (a) Cnl/C2

0 = −100/3 < Cth
nl/C2

0 , note the
absence of the separatrix due to the fact that Cnl < Cth

nl , (b) Cnl/C2
0 = −4/3 > Cth

nl/C2
0 and

(c) Cnl/C2
0 = 4/3 > Cth

nl/C2
0 .

and (φ, p) = (0, 0) and (2π, 0) for the sG potential. These trajectories are known as the
separatrices and are obtained by taking the constant C1 = 0 in equation (2.5).

When Cnl < 0 and in the low-velocity regime, the phase plane exhibits the same kind of
trajectories as for the basic NKG models (see figure 1(a)). In addition, a few more singular
points (φ, p) = (±1,±p0) with p0 = [(

v2 − C2
0

)/
3Cnl

]1/2
for the φ-four potential and

(φ, p) = (0,±p0) and (2π,±p0) for the sG potential, and two more families of closed phase
trajectories appear, indicating the presence of new types of solutions which are not known in
the basic NKG systems. On the other hand, the presence of the separatrix is subject to the
condition

(
v2 − C2

0

)2
> −3ω2

0ηCnl, (2.6)
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where η is the model-dependent numerical coefficient: η = 1 for the φ-four potential and
η = 8 for the sG potential (see figure 1(b)) . This means that the existence and the propagation
of kink solitons in the system are possible only in the case of weakly nonlinear interparticle
coupling

(
Cnl > C th

nl = −C4
0

/
3ηω2

0

)
. Thus, within this condition the kink soliton velocity

must be lower than the threshold value vth = (
C2

0 − ω0
√−3ηCnl/2

)1/2
.

When Cnl > 0, the phase plane of the system in the low-velocity regime, as plotted in
figure 1(c), and that of the basic NKG systems are qualitatively equivalent. As previously
mentioned [14], the kink soliton has a compact structure when v = C0 and more interestingly,
in the purely anharmonic case (C0 = 0), the system exhibits a stable static kink compacton.
This compacton kink is signalled in the phase plane by the separatrix. Its expression, φkc(s),
following from equation (2.5) with C1 = 0 and v = C0 = 0, and its corresponding energy
Ekc are given by [14]:

φkc(s) = ± sin[(s − s0)/γ ], Ekc = Aω2
0dkc

/
16, (2.7)

with |s − s0| < dkc/2, for the φ-four potential, and

φkc(s) = 2 arccos{cn2[(s − s0)/γ, 1/2]} for s � s0,

φkc(s) = −2 arccos{cn2[(s − s0)/γ, 1/2]} for s � s0,
(2.8a)

Ekc = 215/4

9
√

π

	(1/4)

	(3/4)
Aω2

0dkc, (2.8b)

for the sG potential. The quantities γ and dkc are given by

γ = (
6Cnl

/
ηω2

0

)1/4
and dck = πγ, (2.9)

and designate the characteristic length scale of the purely anharmonic system and the width
of the kink compacton, respectively. The functions cn(x, y) and 	(x) are the Jacobi elliptic
function and the Gamma function, respectively. So, the continuum approximation used here
is valid only if dkc/a � 1. In contrast to the kink soliton which has exponentially decreasing
wings extending to infinity, solutions (2.7) and (2.8a) are strictly localized: they have no
wings, that is, they have a compact shape (see figure 2). Such solutions occur because in (2.5)
the nonlinear coupling term, which corresponds to nonlinear dispersion, is preponderant: the
linear coupling term can be zero. In the next section, we shall confine our attention to the
case of positive Cnl since in this case, the low-temperature statistical mechanics of the system
could be influenced by static kink compactons.

3. Low-temperature statistical mechanics

The classical partition function for systems governed by the Hamiltonian (2.1) for density of
states in the phase space is given in the factored form Z = Zφ̇Zφ , where Zφ̇ is the kinetic
contribution and Zφ the configurational part. The kinetic contribution can be easily evaluated
while the configurational part can be evaluated after lengthy algebra by making use of the TIO
technique [4] as in the case of the basic NKG systems. One obtains

Zφ̇ = (2πAa/βh2)N/2, Zφ =
∞∑

n=0

exp
(−βALω2

0εn

)
, (3.1)

where β = 1/kBT , kB being the Boltzmann constant, T the absolute temperature, h the
Planck constant and L = Na the total length of the chain of N particles with assumed periodic
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Figure 2. Kink compacton waveform: (a) for the φ-four potential and (b) for the sG potential.

boundary condition: φN+1 = φ1. The quantities εn are the eigenvalues of the TIO defined by∫ ∞

−∞
dφi exp

[ − βAaω2
0f (φi+1, φi)

]
�n(φi) = exp

(−βAaω2
0εn

)
�n(φi+1), (3.2a)

where

f (φi+1, φi) = 1

2

C2
0

a2ω2
0

(φi+1 − φi)
2 +

1

4

Cnl

a4ω2
0

(φi+1 − φi)
4 +

1

2
[Vs(φi+1) + Vs(φi)]. (3.2b)

Through a set of transformations and neglecting higher powers in (a/d0), the transfer integral
equation (3.2a) with the function (3.2b) can be approximated by a Schrödinger equation.
Thus, for Cnl > 0, we obtain the following Schrödinger-type equation for the eigenfunction
�n(φ) = exp[−βAaω2

0Vs(φ)/2]�n(φ):

− 1

2m∗
d2�n(φ)

dφ2
+ Vs(φ)�n(φ) = ε̃n�n(φ), (3.3)

where ε̃n = εn − V0, with

V0 = − 1

2ρ
ln

(
2πa2

ρd2
0

g1(y)2

)
, m∗ = [βAC0ω0g2(y)]2, ρ = βAaω2

0. (3.4)

The parameters g1(y) and g2(y), defined as

g1(y) =
(

2y

π

)1/2

eyK1/4(y), (3.5)

and

g2(y) =
{

K1/4(y)

4y[K3/4(y) − K1/4(y)]

}1/2

, (3.6)
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are the renormalization parameters induced by the anharmonicity of the interparticle pair
potential. K�(y) is the modified Bessel function of order �, and y a parameter depending on
the nonlinear coupling Cnl, that is, y = βAaC4

0

/
8Cnl.

At this stage, two remarks can be made:

• Firstly, when Cnl = 0 (that is z → ∞), g1(y) = g2(y) = 1 and consequently
V0 = (−1/2ρ) ln

(
2πa2

/
ρd2

0

)
and m∗ = (βAC0ω0)

2, which are the values usually
obtained in the basic NKG systems. So, the use of the TIO leads to a similar Schrödinger
equation to that of the NKG systems with harmonic coupling between adjacent particles.

• Secondly, equation (3.3) can be viewed as the formal Schrödinger equation for a ‘particle’
of mass m∗ moving in the 1D substrate potential Vs(φ).

Hence, the classical partition function and consequently the thermodynamic properties of
generalized NKG systems can be obtained easily from equations (3.1) after determining the
eigenvalues ε̃n in the spirit of the basic NKG systems. For this purpose, we first evaluated ε̃n.

In the thermodynamic limit (L → ∞, N → ∞ and L/N → constant), Zφ is dominated
by the lowest eigenvalue ε̃0 and the free energy per unit length, fl = −(1/βL) ln Z, becomes

fl = 1

βa
ln

(
βh̄C0

ag1(y)

)
+ Aω2

0 ε̃0. (3.7)

As one can easily see, to evaluate fl , the main problem we are faced with consists in the
calculation of the lowest eigenvalue ε̃0 of the Schrödinger differential operator. In the low-
temperature regime β � 1 (m∗ � 1), there are several ways to find the approximate eigenvalue
ε̃0, all of them known as the improved WKB methods (see [21, 22] and references therein). In
the following, we use the procedure developed by Croitoru et al [21] based on the asymptotic
methods from the theory of differential equations depending on a large parameter which for
the basic NKG systems has the advantage of making a clear distinction between the various
contributions to the free energy: phonons, kink, kink–kink interaction and so on. Following
this procedure, the calculation of the ground state ε̃0 is similar to that performed for the basic
NKG systems [21, 22]. Then,

ε̃0 = ε̃00(1 − 2σν), (3.8)

with σ = 1 for the φ-four potential and σ = 2 for the sG potential, and where ε̃00 is the first
term in the asymptotic expansion of the lowest eigenvalue of the isolated potential well given
by

ε̃00 = 1/(2
√

m∗). (3.9)

The quantity ν is the small parameter related to the small shift from the eigenvalue of an isolated
well due to the presence of the other degenerate minima of the potential. The presence of
these degenerate minima leads to the tunnel splitting of the lowest level ε̃00 of the isolated
well. The lower extremity can be found from the boundary conditions for the wavefunction of
equation (3.3) and its derivatives. The result which takes into account the various low-lying
excitation contributions is

ν = νk + νkk, (3.10)

where νk may be viewed as the single kink contribution given by

νk = (6�/π)1/2 exp(−�), (3.11)

with

� = 2
3

√
m∗ = βE0

kg2(y), E0
k = 2

3AC0ω0, (3.12)
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for the φ-four potential and,

νk = (2�/π)1/2 exp(−�), (3.13)

with

� = 8
√

m∗ = βE0
kg2(y), E0

k = 8AC0ω0, (3.14)

for the sG potential, where E0
k is the well-known static kink energy in both cases. Note that

the quantity νk is the tunnelling term since it follows from the escape of a particle from a
potential minimum to an adjacent one. In addition, since this large displacement of particles
is only assured by kink excitations, one can then interpret νk as the kink contribution to the
expression of the eigenvalue ε̃0.

The second quantity νkk which is proportional to exp(−2�) may be viewed as the
contribution of kink–kink interactions and is given by

νkk = −ν2
k ln(12	�), (3.15a)

for the φ-four potential and

νkk = −2ν2
k ln(4	�), (3.15b)

for the sG potential, where 	 = 1.781 072 . . . is the Euler constant. The imaginary part of
νkk, that is, (π/2)ν2

k for the φ-four potential and πν2
k for the sG potential, is omitted in the

above expression and is out of the scope of this paper. Nevertheless, it can be interpreted as
a quantity describing the finite lifetime of each state of the potential [10] analogous to the
result of the basic NKG systems. Thus, we are now in possession of the relevant parameter ε̃0

interfering in the construction of the thermodynamic properties of the system given by

ε̃0 = 1

2
√

m∗ − 1√
m∗

(
6�

π

)1/2

e−� [1 − νk ln(12	�)], (3.16)

for the φ-four potential and

ε̃0 = 1

2
√

m∗ − 2√
m∗

(
2�

π

)1/2

e−� [1 − 2νk ln(4	�)], (3.17)

for the sG potential. The substitution of equations (3.16) and (3.17) into equation (3.7) allows
us to obtain the exact expression of the free-energy density of the system.

On the basis of the treatment of the basic NKG systems, we can then separate the free
energy into two parts fl = fph + ftun. The first part is given by

fph = 1

βa
ln

(
βh̄C0

ag1(y)

)
+

1

2βd0g2(y)
, (3.18)

while the second part, which is the tunnelling contribution since it is proportional to exp(−�),
written in the form known from the soliton gas approach [11, 23], is given by

ftun = −kBT nk(1 − Bnk), (3.19)

with

nk = 1

d0g2(y)

(
6βE0

kg2(y)

π

)1/2

exp
[−βE0

kg2(y)
]
, (3.20a)

and

B = d0g2(y) ln
[
12	βE0

kg2(y)
]
, (3.20b)

for the φ-four potential and,

nk = 2

d0g2(y)

(
2βE0

kg2(y)

π

)1/2

exp
[−βE0

kg2(y)
]
, (3.21a)
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and

B = d0g2(y) ln
[
4	βE0

kg2(y)
]
, (3.21b)

for the sG potential.
Note that the nonlinear interparticle coupling coefficient Cnl enters the above expressions

through the effective mass m∗ which depends on Cnl through the renormalization parameter
g2(y). The analytical results (3.18)–(3.21a) are quite surprising. For a better understanding
of the above expressions of the free energy, it is necessary to estimate their asymptotic
analytical expressions in the limiting case of weak nonlinear coupling between adjacent
particles (Cnl → 0). In this limit, equation (3.18) reduces to

fph = 1

βa
ln

(
βh̄C0

a

)
+

1

2βd0
+

3

4

Cnl

β2Aa2C4
0

(
1 − a

d0

)
, (3.22)

where the first two terms are the well-known contribution of phonons in the free energy of the
basic NKG systems. Consequently, the last term is the correction due to the anharmonicity
of the interparticle potential. Indeed, if the nonlinear substrate potential is absent and the
interparticle potential is harmonic, the only contribution to the free energy is that of phonons
viewed as non-interacting particles. However, if the interparticle potential is anharmonic, as
is the case here, the phonon–phonon interactions are produced due to the anharmonicity. In
this case, the free energy is affected not only by phonons, but also by the phonon–phonon
interactions. According to this result, the first part of the free energy given by equation (3.18)
may be viewed as the contribution to the free energy of the generalized NKG systems of
phonons and phonon–phonon interactions. The quadratic temperature dependence of the
contribution of phonon–phonon interactions to the free energy, for weak nonlinear coupling
(Cnl → 0), suggests that the effect of anharmonicity becomes more and more important when
the temperature is increased.

We now come to the second part of the free energy. When the nonlinear interparticle
coupling is weak, g2(y) ≈ 1 + α and then the quantity � can be expanded as

� = βE0
k(1 + α), (3.23)

where α = 3/16y = 3Cnl/2βAaC4
0 is the renormalization constant and is linearly temperature

dependent. Similarly, the quantity nk defined by equations (3.20a) or (3.21a) can be developed
as

nk = 1

deff

(
6βEeff

π

)1/2

exp(−βEeff) ≈ n0
k

[
1 − α

(
1

2
+ βE0

k

)]
, (3.24a)

with n0
k = (1/d0)

(
6βE0

k

/
π

)1/2
exp

(−βE0
k

)
for the φ-four potential and

nk = 2

deff

(
2βEeff

π

)1/2

exp(−βEeff) ≈ n0
k

[
1 − α

(
1

2
+ βE0

k

)]
, (3.24b)

with n0
k = (2/d0)

(
2βE0

k

/
π

)1/2
exp

(−βE0
k

)
, for the sG potential. Here, the quantities

deff = d0g2(y) ≈ d0(1+α) and Eeff = E0
kg2(y) ≈ E0

k(1+α) can be interpreted as the effective
kink-width and kink rest-energy, respectively, and n0

k the well-known kink density within the
ideal gas approximation. So, if Cnl = 0, equation (3.25a) reduces to the well-known kink
density n0

k. The above development suggests that the quantity nk defined by equation (3.20a)
and (3.21a) for the φ-four potential and for the sG potential, respectively, can be interpreted
as the kink density within the ideal gas approximation in the generalized NKG systems
while the second part of the free energy (tunnelling term), given by equation (3.19), is
the contribution of kink-phonons and kink–kink interactions. Accordingly, the logarithmic
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temperature dependence quantity B defined by equations (3.20b) and (3.21b), which designates
the second virial coefficient in the free energy, can also be attributed to the spatial shift in the
trajectory of kink solitons caused by an elastic collision [11, 23]. It can also be written in the
compact form as

B = deff ln(12	βEeff), (3.25a)

for the φ-four potential and

B = deff ln(4	βEeff), (3.25b)

for the sG potential. It appears that the nonlinear interparticle coupling contributes to increasing
the second virial coefficient. Consequently, one can conclude that the anharmonicity of the
interparticle potential contributes to the increase of the kink–kink interactions in the system.

Actually, what the above results suggest is that, the temperature enters nk through the ratio
βE0

k and also through the parameter y. Thus, the universal temperature dependence of the low-
temperature density of kinks nk ∝ (βEk)

1/2 exp(−βEk) with Ek being the static kink energy,
where only numerical prefactors are model dependent and where the temperature enters only
through the ratio βEk, is longer more valid when the anharmonicity of the interparticle pair
potential is taken into account, since Ek has been replaced by the temperature-dependent static
kink effective energy Eeff .

As we have calculated the free-energy density fl , all other thermodynamic quantities such
as the internal energy, the entropy and the specific heat capacity can be readily obtained. For
example, in the limit of weak anharmonicity of the interparticle pair potential and where B is
negligible, the specific heat per particle is given by

cN/kB = 1 − α(1 − a/d0) + n0
ka

[(
βE0

k − 1/2
)2 − 1/2

]
− n0

kaα
(
βE0

k + 1/2
)[(

βE0
k − 1/2

)2
+ 1/2

]
. (3.26)

The terms proportional to α are the correction factors due to the anharmonicity of the
interparticle pair potential. It appears that the anharmonicity of the interparticle potential
contributes in lowering the specific heat.

We now turn our attention to one of the important cases, that is, the purely anharmonic
system (C0 = 0). In this limit, as mentioned in section 2, the system exhibits the static kink
compacton. So, one may expect that the thermodynamic properties of the system can be
influenced by the existence of this static kink compacton. In fact, in the limit C0 = 0, the
TIO (3.2a) can also be approximated, in the limit of slowly varying fields (dkc � a), by the
Schrödinger equation (3.3) with characteristic parameters m∗ and V0 given by

m∗ = βAaω2
0
	(1/4)

	(3/4)

(
βACnl

4a3

)1/2

,

(3.27)

V0 = − 1

2βAaω2
0

ln

[√
2

4
	(1/4)2

(
a3

βACnl

)1/2
]

.

By making use of the procedure of the preceding paragraph for solving ε̃0, we then arrive at
the following mathematical expressions of ε̃0:

ε̃0 = 1

2
√

m∗ − 1√
m∗

(
6�

π

)1/2

e−� [1 − νk ln(12	�)], (3.28a)

for the φ-four potential and

ε̃0 = 1

2
√

m∗ − 2√
m∗

(
2�

π

)1/2

e−� [1 − 2νk ln(4	�)], (3.28b)
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for the sG potential. These expressions of ε̃0 are similar to those obtained for the kink soliton
bearing systems given by equations (3.16) and (3.17), and for which the quantities m∗ and �

are expressed in a different manner. Thus, we have

� = χ [βEkc]3/4, (3.29)

where χ is a temperature-independent coefficient given by

χ =
{

213

35π4

[
	(1/4)

	(3/4)

]2 (
dkc

a

)}1/4

, (3.30a)

for the φ-four potential, and

χ =
{

23/435

π5/2

	(3/4)

	(1/4)

(
dkc

a

)}1/4

, (3.30b)

for the sG potential, and where Ekc is the static kink compacton energy defined by equation (2.7)
for the φ-four potential and by equation (2.8b) for the sG one.

By substituting equation (3.28a) into equation (3.1) and evaluating fl = (1/βL) ln Z, we
obtain the exact analytical free-energy density of the purely anharmonic system coming from
the Hamiltonian (2.1). This expression can be separated into two parts: fl = fph + ftun, where
fph can be viewed as the contribution of anharmonic phonons to the free energy:

fph = 1

4βa
ln

[
2β3h4Cnl

	(1/4)4π2Aa5

]
+

[
	(3/4)

2	(1/4)

]1/2 [
Aaω2

0

β3Cnl

]1/4

, (3.31)

while the tunnelling part,ftun, which is a function of kink compacton parameters, can be written
as

ftun = −kBT nkc(1 − Bkcnkc), (3.32)

in analogy with the tunnelling part of basic NKG systems, with

nkc =
(

211

3π

)1/2
(βEkc)

5/8

χ1/2dkc
exp[−χ(βEkc)

3/4], (3.33)

Bkc = 3

32
χ(βEkc)

−1/4dkc ln[12	χ(βEkc)
3/4], (3.34)

for the φ-four potential and

nkc = 9 × 23/4

[
	(3/4)

	(1/4)

]
(βEkc)

5/8

χ1/2dkc
exp[−χ(βEkc)

3/4], (3.35)

Bkc = 23/4

32
√

π

	(1/4)

	(3/4)
χ

(
βE

(c)
kc

)−1/4
dkc ln

[
4	χ

(
βE

(c)
kc

)3/4]
, (3.36)

for the sG potential.
Equations (3.32)–(3.36) give the exact result of the free-energy density. However, it is

not possible to give here with certainty the correct interpretation of quantities nkc and Bkc,
since we are not in possession of the phenomenological results of kink compacton gas like
those resulting from the CKBT theory of kink soliton gas. Nevertheless, based on the results
of the soliton gas approach, we may interpret nkc as the kink compacton density within the
ideal gas of kink compactons. Although the first term of the tunnelling contribution of the free
energy density of the system verifies a temperature dependence relation similar to that of kink
solitons where numerical prefactors are model dependent and where the temperature enters
the kink density only through the ratio βEkc, the power of the ratio βEkc appearing in the
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Figure 3. Specific heat of kink compactons (ctun) as a function of the reduced temperature
Tr = kBT/Ekc: (a) for the φ-four potential and (b) for the sG potential, with dkc/a = 10. ctun is
the last term of equation (3.39) which is proportional to nkc and Ekc is the static kink compacton
energy.

Arrhenius factor of nkc or of the exact result of the free energy density is 3/4 instead of 1. In
addition, in this Arrhenius factor a numerical temperature independent coefficient χ appears
which is inversely proportional to the dimensionless discreteness parameter (a/dkc) of purely
anharmonic systems.

As we have calculated the free energy density, all other thermodynamic quantities can be
readily obtained. The internal energy density u = U/L = ∂βf/∂β, in the limit of weak Bkc,
is given by

u = 1

βa

{
3

4
+

1

8

(
24

η

)1/4 [
	(3/4)

	(1/4)

]1/2
a

γ

(
βAaω2

0

)1/2

}
− nkc

β

[
5

8
− 3

4
χ(βEkc)

3/4

]
,

(3.37)

while the entropy is easily found to have the form:

s/kB = 1

4a

{
3 − ln

[
4β3h4Cnl

π2	(1/4)4Aa5

]}
− 3

8

(
24

η

)1/4 [
	(3/4)

	(1/4)

]1/2 1

γ

(
βAaω2

0

)1/4

+
3

4
nck

[
1

2
+ χ(βEkc)

3/4

]
(3.38)

and the specific heat per unit length has the form

c/kB = 3

4a

{
1

4
+

1

8

(
24

η

)1/4 [
	(3/4)

	(1/4)

]1/2
a

γ

(
βAaω2

0

)1/4

}

+ nkc

{[
3

4
χ(βEkc)

3/4 − 1

2

]2

− 31

64

}
. (3.39)
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The terms proportional to nkc are the tunnelling contributions and result from the presence of
kink compactons in the system. All of these thermodynamic functions are of course functions
of the kink compacton parameters, namely, the width and static energy. Figure 3 shows, for
example, the variation of the tunnelling contribution of the specific heat of the system as a
function of the temperature. As the temperature is increased, it varies and reaches a maximum.
This behaviour of the tunnelling contribution of the specific heat has already been observed in
the kink soliton-bearing systems.

4. Conclusion

As is well known, the TIO method gives rise to the exact calculation of the thermodynamic
properties at low temperature of Hamiltonian systems including kink-bearing systems. Since
NKG systems with anharmonic interparticle potential exhibit a rich variety of static and
travelling solitonic structures among which are the kink solitons and kink compactons, in
this paper, we have investigated the low-temperature statistical mechanics of these systems
by means of the TIO method. The exact explicit expression of the free energy has been
obtained. We have shown that in the limit of weak nonlinear interparticle coupling, the
anharmonicity of the interparticle potential contributes to lowering the specific heat, and the
associated dimensionless renormalization constant α linearly depends on the temperature.
Thus, the effect of anharmonicity becomes more and more important when the temperature
is increased. In addition, for arbitrary nonlinear interparticle coupling, although the presence
of kink solitons still remains signalled by an exponential term exp(−βEk), nevertheless, the
quantity Ek appears to be the effective static energy of the kink soliton which is a complicated
function of the temperature. Interestingly, for purely anharmonic systems, the presence of
kink compactons is signalled by a term proportional to exp[−χ(βEkc)

3/4] in the free energy
density where Ekc is the energy of the static kink compacton and χ a coefficient inversely
proportional to the dimensionless discreteness parameter of the system.

Although a complete proof of a similar CKBT phenomenology does not exist at present,
the exact results of thermodynamic quantities obtained here strongly support the idea that their
phenomenology should be valid at low temperatures. We hope that these exact results for 1D
NKG systems with anharmonic interparticle interactions and those of the kink compacton-
bearing systems will stimulate further studies with the goal of making detailed comparisons
to test the validity of a further phenomenological generalization of the CKBT theory. Let us
mention that our results are valid only when the nonlinear interparticle coupling has positive
values (Cnl > 0). However, as the negative values of Cnl provide additional attractive or
repulsive interactions between sites which are responsible for the appearance of solitonic
structures such as defects, bubbles, peakons and cups [15], it would then be necessary to
extend this work to this particular case, which is now under consideration.
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